Stranger Things: Poor IoT Security Frameworks Threaten Fabric of Internet

by Keith O'Byrne for blog, IOT, Security

Ispacen 1978, NASA scientist Donald J. Kessler proposed a theory about what could happen when the number of objects in low earth orbit reached a certain high density. Once that threshold was reached, he posited that collisions between those objects would be inevitable. Even a chip of paint could be enough to crack the window of a space shuttle. This would trigger a cascade effect: the more collisions, the more debris; the more debris, the more collisions. The result? An atmosphere so clogged with junk that it would set back space activity by decades. Man would become trapped, unable to deploy satellites or explore space. The parallels to be drawn between the Kessler Effect and the IoT security challenges we are facing today represent an unsettling truth. If we replace those orbiting objects with embedded IoT devices. They’re connected and many are unsecured. Should we be worried that the Kessler effect threatens the future of the internet itself?

DDoS at Scale – Unparalleled IoT Security Challenge

Compromised devices like security cameras, home routers and DVRs have been proven to be part of the Mirai botnet used in the two biggest DDoS attacks in history. In September 2016, the world’s largest Distributed Denial of Service (DDoS) was directed against the website of the cybersecurity journalist Brian Krebs. It involved more than 620Gbps of traffic, and was the biggest DDoS ever seen at the time. Then, just a week later, in another IoT security attacks, a DDoS that was 40% larger than the Krebs attack took down OVH, a French web hosting provider and again in October, Dyn was subjected to pings from tens of millions of IP addresses.

Build-a-botnet at IoT scale 

To create something capable of generating those levels of traffic, you’d need a huge botnet of compromised devices. In the past, botnets comprised thousands of infected PCs, but with IoT, the issue of scale changes completely. There are many millions more unattended IoT devices out there. Estimates vary, but even the lowest figure from Gartner suggests 6.4 billion connected devices right now, not including PCs and smartphones.

The difference is that most people use their PCs most days. Many users would notice something was wrong with their machines, so they’d patch, reboot or update and those PCs would drop out of the botnet. This made it hard for attackers to build botnets that stayed big for long.

But unlike PCs and smartphones, the deployment model for most IoT devices is set-and-forget. After all, who’s paying close attention to their IP camera that’s keeping watch on a holiday home, or a cheap digital video recorder bought from a furniture store?

Many of these devices have unfettered internet access; this connectivity makes them attractive to hackers while their lack of security makes them easy to hijack in large numbers. Once fully armed and operational, the result is a weapon to be pointed at a target of choice, denying them usage of the internet.

Whose IoT security is it, anyway?

Here’s another difference between IoT and the PC/smartphone paradigm: low-power, embedded software devices that are field deployed, potentially for years, don’t fit the patch-monthly approach that has built up around ‘human interface’ devices. Just as IoT sensors are seeing potentially longer lives, their manufacturers are seeing shorter lives: products, divisions or even entire companies merge, fail or change direction. This ‘orphans’ devices that go from being rarely patched to abandoned – yet they’re still out there!

Responsible manufacturers of cellular gateways are releasing notes to say ‘patch this’ or ‘upgrade this’, but plenty of others don’t. No one vendor or ISP or government can solve this problem. It’s not sufficient to mandate standards or legislate against security vulnerabilities. Every stakeholder in the IoT needs to consider the risks inherent in legions of well-connected devices swamping or – as is more likely – balkanising the internet.

One positive step to addressing this issue is at the access network level. We believe IoT device connectivity needs to move from a default ‘open’ state to a ‘rule of least privilege’. Instead of that embedded IP address talking to a system it isn’t supposed to, or shouldn’t, it’s only granted the minimum access like talking to three designated endpoints in order to perform its function.

Another approach is a layered defence in depth, albeit inverted from the usual defending from outsiders. Where IoT devices utilize a home gateway or router, let it be a different SSID (Service Set Identifier) or VLAN (Virtual Local Area Network) that can be controlled. If on cellular, make sure that custom DNS and IP ACL controls are available to ensure that access to available to only the necessary API’s or endpoints.

In the worst case, we’re looking at a classic Tragedy of the Commons. But if no one stakeholder can fix the problem with IoT and security, the very least we can do – for now – is not to make the situation worse.

An abridged version of this blog first appeared in IoT Daily Agenda – on December 12, 2016

Don't compromise user experience by compromising mobile data speeds
Prev post Asavie and EpiSensor Announce Partnership to Securely Connect the Industrial Internet of Things

Industrial grade IoT sensors with carrier grade secure connectivity seamlessly connecting to cloud-side applications and platforms…

Don't compromise user experience by compromising mobile data speeds
Next post Don't compromise user experience by compromising mobile data speeds

MOBILE DATA EXPERIENCE DEFINED BY quality Anyone who can remember the early days of 2G, trying…